271 research outputs found

    Compositional characterisation of the Themis family

    Full text link
    Context. It has recently been proposed that the surface composition of icy main-belt asteroids (B-,C-,Cb-,Cg-,P-,and D-types) may be consistent with that of chondritic porous interplanetary dust particles (CPIDPs). Aims. In the light of this new association, we re-examine the surface composition of a sample of asteroids belonging to the Themis family in order to place new constraints on the formation and evolution of its parent body. Methods. We acquired NIR spectral data for 15 members of the Themis family and complemented this dataset with existing spectra in the visible and mid-infrared ranges to perform a thorough analysis of the composition of the family. Assuming end-member minerals and particle sizes (<2\mum) similar to those found in CPIDPs, we used a radiative transfer code adapted for light scattering by small particles to model the spectral properties of these asteroids. Results. Our best-matching models indicate that most objects in our sample possess a surface composition that is consistent with the composition of CP IDPs.We find ultra-fine grained Fe-bearing olivine glasses to be among the dominant constituents. We further detect the presence of minor fractions of Mg-rich crystalline silicates. The few unsuccessfully matched asteroids may indicate the presence of interlopers in the family or objects sampling a distinct compositional layer of the parent body. Conclusions. The composition inferred for the Themis family members suggests that the parent body accreted from a mixture of ice and anhydrous silicates (mainly amorphous) and subsequently underwent limited heating. By comparison with existing thermal models that assume a 400km diameter progenitor, the accretion process of the Themis parent body must have occurred relatively late (>4Myr after CAIs) so that only moderate internal heating occurred in its interior, preventing aqueous alteration of the outer shell.Comment: 9 pages, 5 figures, accepted for publication in A&

    The Spectrum of Pluto, 0.40 - 0.93 μ\mum I. Secular and longitudinal distribution of ices and complex organics

    Full text link
    Context. During the last 30 years the surface of Pluto has been characterized, and its variability has been monitored, through continuous near-infrared spectroscopic observations. But in the visible range only few data are available. Aims. The aim of this work is to define the Pluto's relative reflectance in the visible range to characterize the different components of its surface, and to provide ground based observations in support of the New Horizons mission. Methods. We observed Pluto on six nights between May and July 2014, with the imager/spectrograph ACAM at the William Herschel Telescope (La Palma, Spain). The six spectra obtained cover a whole rotation of Pluto (Prot = 6.4 days). For all the spectra we computed the spectral slope and the depth of the absorption bands of methane ice between 0.62 and 0.90 μ\mum. To search for shifts of the center of the methane bands, associated with dilution of CH4 in N2, we compared the bands with reflectances of pure methane ice. Results. All the new spectra show the methane ice absorption bands between 0.62 and 0.90 μ\mum. The computation of the depth of the band at 0.62 μ\mum in the new spectra of Pluto, and in the spectra of Makemake and Eris from the literature, allowed us to estimate the Lambert coefficient at this wavelength, at a temperature of 30 K and 40 K, never measured before. All the detected bands are blue shifted, with minimum shifts in correspondence with the regions where the abundance of methane is higher. This could be indicative of a dilution of CH4:N2 more saturated in CH4. The longitudinal and secular variations of the parameters measured in the spectra are in accordance with results previously reported in the literature and with the distribution of the dark and bright material that show the Pluto's albedo maps from New Horizons.Comment: This manuscript may change and improve during the reviewing process. The data reduction and calibration is reliable and has been checked independently using different reduction approaches. The data will be made publicily available when the paper is accepted. If you need them before, please, contact the autho

    The Compositional Structure of the Asteroid Belt

    Full text link
    The past decade has brought major improvements in large-scale asteroid discovery and characterization with over half a million known asteroids and over 100,000 with some measurement of physical characterization. This explosion of data has allowed us to create a new global picture of the Main Asteroid Belt. Put in context with meteorite measurements and dynamical models, a new and more complete picture of Solar System evolution has emerged. The question has changed from "What was the original compositional gradient of the Asteroid Belt?" to "What was the original compositional gradient of small bodies across the entire Solar System?" No longer is the leading theory that two belts of planetesimals are primordial, but instead those belts were formed and sculpted through evolutionary processes after Solar System formation. This article reviews the advancements on the fronts of asteroid compositional characterization, meteorite measurements, and dynamical theories in the context of the heliocentric distribution of asteroid compositions seen in the Main Belt today. This chapter also reviews the major outstanding questions relating to asteroid compositions and distributions and summarizes the progress and current state of understanding of these questions to form the big picture of the formation and evolution of asteroids in the Main Belt. Finally, we briefly review the relevance of asteroids and their compositions in their greater context within our Solar System and beyond.Comment: Accepted chapter in Asteroids IV in the Space Science Series to be published Fall 201

    Spectral and Spin Measurement of Two Small and Fast-Rotating Near-Earth Asteroids

    Full text link
    In May 2012 two asteroids made near-miss "grazing" passes at distances of a few Earth-radii: 2012 KP24 passed at nine Earth-radii and 2012 KT42 at only three Earth-radii. The latter passed inside the orbital distance of geosynchronous satellites. From spectral and imaging measurements using NASA's 3-m Infrared Telescope Facility (IRTF), we deduce taxonomic, rotational, and physical properties. Their spectral characteristics are somewhat atypical among near-Earth asteroids: C-complex for 2012 KP24 and B-type for 2012 KT42, from which we interpret the albedos of both asteroids to be between 0.10 and 0.15 and effective diameters of 20+-2 and 6+-1 meters, respectively. Among B-type asteroids, the spectrum of 2012 KT42 is most similar to 3200 Phaethon and 4015 Wilson-Harrington. Not only are these among the smallest asteroids spectrally measured, we also find they are among the fastest-spinning: 2012 KP24 completes a rotation in 2.5008+-0.0006 minutes and 2012 KT42 rotates in 3.634+-0.001 minutes.Comment: 4 pages, 3 figures, accepted for publication in Icaru

    Keck and Gemini spectral characterization of Lucy mission fly-by target (152830) Dinkinesh

    Full text link
    Recently, the inner main belt asteroid (152830) Dinkinesh was identified as an additional fly-by target for the Lucy mission. The heliocentric orbit and approximate absolute magnitude of Dinkinesh are known, but little additional information was available prior to its selection as a target. In particular, the lack of color spectrophotometry or spectra made it impossible to assign a spectral type to Dinkinesh from which its albedo could be estimated. We set out to remedy this knowledge gap by obtaining visible wavelength spectra with the Keck telescope on 2022 November 23 and with Gemini-South on 2022 December 27. The spectra measured with the Keck I/Low Resolution Imaging Spectrometer (LRIS) and the Gemini South/Gemini Multi-Object Spectrograph South (GMOS-S) are most similar to the average spectrum of S- and Sq-type asteroids. The most diagnostic feature is the \approx15±\pm1%\% silicate absorption feature at \approx0.9-1.0~micron. Small S- and Sq-type asteroids have moderately high albedos ranging from 0.17-0.35. Using this albedo range for Dinkinesh in combination with measured absolute magnitude, it is possible to derive an effective diameter and surface brightness for this body. The albedo, size and surface brightness are important inputs required for planning a successful encounter by the Lucy spacecraft.Comment: 7 pages, 1 figure. Under review in Icaru

    Spectroscopy of Pluto, 380-930 Nm at Six Longitudes

    Get PDF
    We have obtained spectra of the Pluto-Charon pair (unresolved) in the wavelength range 380-930 nm with resolution approx..450 at six roughly equally spaced longitudes. The data were taken in May and June, 2014, with the 4.2-m Isaac Newton Telescope at Roque de Los Muchachos Observatory in the Canary Islands, using the ACAM (auxiliary-port camera) in spectrometer mode, and using two solar analog stars. The new spectra clearly show absorption bands of solid CH4 at 620, 728, and 850-910 nm, which were known from earlier work. The 620-nm CH4 band is intrinsically very weak, and its appearance indicates a long optical path-length through the ice. This is especially true if it arises from CH4 dissolved in N2 ice. Earlier work (Owen et al. Science 261, 745, 1993) on the near-infrared spectrum of Pluto (1-2.5 microns) has shown that the CH4 bands are shifted to shorter wavelengths because the CH4 occurs as a solute in beta-phase crystalline N2. The optical path-length through the N2 crystals must be on the order of several cm to produce the N2 band observed at 2.15 microns. The new spectra exhibit a pronounced red slope across the entire wavelength range; the slope is variable with longitude, and differs in a small but significant way from that measured at comparable longitudes by Grundy & Fink (Icarus 124, 329, 1996) in their 15-year study of Pluto's spectrum (500-1000 nm). The new spectra will provide an independent means for calibrating the color filter bands on the Multispectral Visible Imaging Camera (MVIC) (Reuter et al. Space Sci. Rev. 140, 129, 2008) on the New Horizons spacecraft, which will encounter the Pluto-Charon system in mid-2015. They will also form the basis of modeling the spectrum of Pluto at different longitudes to help establish the nature of the non-ice component(s) of Pluto's surface. It is presumed that the non-ice component is the source of the yellow-red coloration of Pluto, which is known to be variable across the surface

    Multiple and Fast: The Accretion of Ordinary Chondrite Parent Bodies

    Get PDF
    Although petrologic, chemical and isotopic studies of ordinary chondrites and meteorites in general have largely helped establish a chronology of the earliest events of planetesimal formation and their evolution, there are several questions that cannot be resolved via laboratory measurements and/or experiments only. Here we propose rationale for several new constraints on the formation and evolution of ordinary chondrite parent bodies (and by extension most planetesimals) from newly available spectral measurements and mineralogical analysis of main belt S-type asteroids (83 objects) and unequilibrated ordinary chondrite meteorites (53 samples). Based on the latter, we suggest spectral data may be used to distinguish whether an ordinary chondrite was formed near the surface or in the interior of its parent body. If these constraints are correct, the suggested implications include that: i) large groups of compositionally similar asteroids are a natural outcome of planetesimal formation and, consequently, meteorites within a given class can originate from multiple parent bodies; ii) the surfaces of large (up to ~200km) S-type main-belt asteroids expose mostly the interiors of the primordial bodies, a likely consequence of impacts by small asteroids (D<10km) in the early solar system (Ciesla et al. 2013); iii) the duration of accretion of the H chondrite parent bodies was likely short (instantaneous or in less then ~10^5 yr but certainly not as long as 1 Myr); iv) LL-like bodies formed closer to the Sun than H-like bodies, a possible consequence of radial mixing and size sorting of chondrules in the protoplanetary disk prior to accretion.Comment: Accepted for publication in Ap
    corecore